### SHIVAJI UNIVERSITY, KOLHAPUR - 416 004, MAHARASHTRA

www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर - ४१६ ००४,महाराष्ट्र

दूरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१–२६०९०९३/९४



### SU/BOS/Science/497

### To,

| The Principal,                                 | The Head/Co-ordinator/Director     |
|------------------------------------------------|------------------------------------|
| All Concerned Affiliated Colleges/Institutions | All Concerned Department (Science) |
| 9                                              |                                    |
| Shivaji University, Kolhapur                   | Shivaji University, Kolhapur.      |

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

#### Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

|    | M.Sc.Part-II (Sem. III           | & IV) as | per NEP-2020                   |
|----|----------------------------------|----------|--------------------------------|
| 1. | Microbiology (HM)                | 8.       | Food Science & Nutrition       |
| 2. | Pharmaceutical Microbiology (HM) | 9.       | Food Science & Technology      |
| 3. | Microbiology                     | 10.      | Biochemistry                   |
| 4. | Computer Science                 | 11.      | Biotechnology                  |
| 5. | Computer Science (Online Mode)   | 12.      | Medical Information Management |
| 6. | Data Science                     | 13.      | Environmental Science          |
| 7. | Information Technology (Entire)  | 14.      | Physics                        |

This syllabus, nature of question and equivalence shall be implemented from the academic year 2023-2024 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in</u>)

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2023 & March/April 2024. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

**Dy Registrar** Dr. S. M. Kubal

### /

#### Copy to:

| Cop |                                                |    |                                      |
|-----|------------------------------------------------|----|--------------------------------------|
| 1   | The Dean, Faculty of Science & Technology      | 8  | P.G. Admission/Seminar Section       |
| 2   | Director, Board of Examinations and Evaluation | 9  | Computer Centre/ Eligibility Section |
| 3   | The Chairman, Respective Board of Studies      | 10 | Affiliation Section (U.G.) (P.G.)    |
| 4   | B.Sc. Exam/ Appointment Section                | 11 | Centre for Distance Education        |

# Date: 10/07/2023



NAAC(2021) With CGPA 3.52

### Choice Based Credit System with Multiple Entry and Multiple Exit Option (NEP-2020) M.Sc. Programme Structure M.Sc. Part – II (Level-9) M.Sc. Pharmaceutical Microbiology (Horizontal Mobility) CBCS Pattern

|               |     |                                       | SEMES                | TER-III (Du                                                        | iration- S                 | Six month)         |         |                          |         |         |       |
|---------------|-----|---------------------------------------|----------------------|--------------------------------------------------------------------|----------------------------|--------------------|---------|--------------------------|---------|---------|-------|
|               | Sr. | Course code                           | Tea                  | ching Scheme                                                       | e                          | Examination Scheme |         |                          |         |         |       |
|               | No. |                                       | Theory and Practical |                                                                    | University Assessment (UA) |                    |         | Internal Assessment (IA) |         |         |       |
|               |     |                                       | Lectures             | Hours                                                              | Credit                     | Maximum            | Minimum | Exam.                    | Maximum | Minimum | Exam. |
|               |     |                                       | (per week)           | (per week)                                                         |                            | Marks              | Marks   | Hours                    | Marks   | Marks   | Hours |
| CGPA          | 1   | CC-301: Genetic Engineering           | 4                    | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               | 2   | CCS-302: Microbial Diversity          | 4                    | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               |     | and Extremophiles                     |                      |                                                                    |                            |                    |         |                          |         |         |       |
|               | 3   | CCS-303: Pharmaceutical               | 4                    | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               |     | Microbiology                          |                      |                                                                    |                            |                    |         |                          |         |         |       |
|               | 4   | <b>DSE-304:</b> Immunology            | 4                    | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               | 5   | CCPR-305: Laboratory Course           | 16                   | 16                                                                 | 8                          | 200*               | 80      | -                        | -       | -       | #     |
| Total (C)     |     |                                       | -                    | -                                                                  | 24                         | 520                | -       | -                        | 80      | -       | -     |
|               | 1   | AEC-306                               | 2                    | 2                                                                  | 2                          | -                  | -       | -                        | 50      | 20      | 2     |
|               | 2   | EC (SWMMOOC)-307                      | Number of le         | Number of lectures and credit shall be as specified on SWAYAM MOOC |                            |                    |         |                          |         |         |       |
| Non-CGPA      |     | Food Microbiology and Food            |                      |                                                                    |                            |                    |         |                          |         |         |       |
|               |     | Safety                                |                      |                                                                    |                            |                    |         |                          |         |         |       |
|               |     |                                       | SEMES                | TER-IV (Du                                                         | ration- S                  |                    |         |                          |         |         |       |
| CGPA          | 1   | CC-401: Quality Management<br>and IPR | 4                    | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               | 2   | CCS-402: Fermentation Technolo        | ogy 4                | 4                                                                  | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               |     | and Process Designing                 | g                    |                                                                    |                            |                    |         |                          |         |         |       |
|               | 3   | CCS-403: Bioinformatics               | 4                    | 4 4                                                                | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               | 4   | <b>DSE-404:</b> Medical Microbiology  | 4                    | 4 4                                                                | 4                          | 80\$               | 32      | 3                        | 20      | 8       | 1     |
|               | 5   | CCPR-405:Laboratory Course an         | d 16                 | 16                                                                 | 8                          | 200*               | 80      | -                        | -       | -       | #     |
|               |     | Project                               |                      |                                                                    |                            |                    |         |                          |         |         |       |
| Total (D)     | T   | 1                                     | -                    |                                                                    | 24                         | 520                | -       | -                        | 80      | -       | -     |
| Non-CGPA      | 1   | SEC-406                               | 2                    |                                                                    | 2                          | -                  | -       | -                        | 50      | 20      | 2     |
|               | 2   | <b>GE-407:</b> Basics of Microbiology | 2                    |                                                                    | 2                          | -                  | -       | -                        | 50      | 20      | 2     |
| Total (C + D) | )   |                                       | -                    | - 4                                                                | 48                         | 1040               | -       | -                        | 160     | -       | -     |

1. \*Practical Examination will be internal/external as per department choice

2. \$ Question no. 1 of each question paper will be subjective (short answer question instead of objective)

3. # Duration of Practical Examination will be 5 days (1 inspection day and 4 Practical days)

| • Student contact hours per week : <b>32</b> Hours (Min.)                                                                                                                                                                                                                                                                                                                                                          | • Total Marks for M.ScII : 1200                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Theory and Practical Lectures : 60 Minutes Each                                                                                                                                                                                                                                                                                                                                                                  | • Total Credits for M.ScII (Semester III & IV) : 48                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>CC-Core Course</li> <li>CCS- Core Course Specialization</li> <li>CCPR-Core Course Practical and Project</li> <li>DSE-Discipline Specific Elective</li> <li>AEC-Mandatory Non-CGPA compulsory Ability Enhancement Course</li> <li>SEC- Mandatory Non-CGPA compulsory Skill Enhancement Course</li> <li>EC (SWM MOOC) - Non-CGPA Elective Course</li> <li>GE- Multidisciplinary Generic Elective</li> </ul> | <ul> <li>Practical Examination is annual.</li> <li>Examination for CCPR-305 shall be based on Semester III Practical's.</li> <li>Examination for CCPR-405 shall be based on Semester IV Practical's.</li> <li>*Duration of Practical Examination as per respective BOS guidelines</li> <li>Separate passing is mandatory for Theory, Internal and Practical Examination</li> </ul> |
| Requirement for Entry at Level 9:<br>Completed all requirements of the relevant Post Graduate Diploma (Le                                                                                                                                                                                                                                                                                                          | evel 8) in Diploma in Pharmaceutical Microbiology (HM)                                                                                                                                                                                                                                                                                                                             |

• Exit at Level 9: Students will exit after Level 9 with Master's Degree in Pharmaceutical Microbiology (HM) if he/she completes the courses equivalent to minimum of 96 credits.

|         | M.ScI | M.ScII | Total |
|---------|-------|--------|-------|
| Marks   | 1200  | 1200   | 2400  |
| Credits | 48    | 48     | 96    |

#### I. CGPA course:

- 1. There shall be 10 Core Courses (CC)per programme.
- 2. There shall be 04 Core Course Practical's (CCPR) per programme.
- 3. There shall be 04 Core Course Specialization (CCS) of 16 credits per programme.
- 4. There shall be 02 Discipline Specific Elective (DSE) courses of 08 credits per programme
- 5. Total credits for CGPA courses shall be of 96 credits per programme

#### II. Mandatory Non-CGPA Courses:

- 1. There shall be 02 Mandatory Non-CGPA compulsory Ability Enhancement Courses (AEC I and II) of 02 credits each per programme.
- 2. There shall be 02 Mandatory Non-CGPA compulsory Skill Enhancement Course (SEC I and II) of 02 credits per program.
- 3. There shall be one Elective Course (EC) (SWAYAM MOOC). The credits of this course shall be as specified on SWAYAM MOOC.
- 4. There shall be one Generic Elective (GE) course of 02 credits per programme. Each student has to take generic elective from the department other than parent department.
- 5. The total credits for Non-CGPA course shall be of 08 credits + 2-4 credits of EC as per availability.
- 6. The credits assigned to the course and the programme are to be earned by the students and shall not have any relevance with the work load of the teacher.

# Shivaji University, Kolhapur



### Accredited By NAAC with 'A++' grade with CGPA 3.52

Syllabus for

# Master of Science (M.Sc.)

## In

# Pharmaceutical Microbiology (NEP-2020) (HM)

(Under Faculty of Science and Technology)

## Part II

(Subject to modifications to be made time to time)

Syllabus to be implemented from 2023-2024

# M.Sc. Pharmaceutical Microbiology (NEP-2020) (HM)

# Part - II Syllabus

| SEMESTER III        |                                                               |  |
|---------------------|---------------------------------------------------------------|--|
| CC-301              | : Genetic Engineering                                         |  |
| CCS-302             | : Microbial Diversity and Extremophiles                       |  |
| CCS-303             | : Pharmaceutical Microbiology                                 |  |
| DSE-304             | : Immunology                                                  |  |
| CCPR-305            | : Laboratory Course                                           |  |
| AEC-306             | : Mandatory Non-CGPA compulsory: Ability Enhancement Course   |  |
| EC-307<br>(SWMMOOC) | : Non-CGPA Elective Course: Food Microbiology and Food Safety |  |
|                     | SEMESTER IV                                                   |  |
| CC-401              | : Quality Management and IPR                                  |  |
| CCS-402             | : Fermentation Technology and Process Designing               |  |
| CCS-403             | : Bioinformatics                                              |  |
| DSE-404             | : Medical Microbiology                                        |  |
| CCPR-405            | : Laboratory Course and Dissertation (Project)                |  |
| SEC-406             | : Mandatory Non-CGPA compulsory Skill Enhancement Course      |  |
| GE-407              | : Generic Elective: Basics of Microbiology                    |  |

#### **CC-301: Genetic Engineering 60 Hrs** Credit I **Basics Of Recombinant DNA Technology** 15 Hrs Restriction analysis: Types of restriction enzyme, Type I, II and III, restriction modification systems, type II restriction endonucleases and properties, isoschizomers and neoschizomers, mcr/mrr genotypes, Cohesive and blunt end ligation, linkers, adaptors, homopolymeric tailing. Labeling of DNA:Nick translation, random priming, radioactive and non-radioactive probes, use of Klenow enzyme, T4 DNA polymerase, bacterial alkaline phosphatase, polynucleotide kinase. Hybridization techniques: Northern, Southern, Western and Colony hybridization, Fluorescence in situ hybridization, Restriction maps and mapping techniques, DNA fingerprinting, chromosome walking & chromosome jumping. DNA-Protein Interactions: Electro mobility shift assay, DNase I footprinting, methyl interference assay. 15 Hrs Credit II **Cloning Vectors** Gene Cloning Vectors: Plasmids (Natural and synthetic), bacteriophages, M13, MP vectors, phagemids, Lambda vectors; insertion and replacement vectors, EMBL, \lambda DASH, \lambda gt10/11, \lambda ZAP etc. Cosmid vectors. Artificial chromosome vectors (YACs, BACs), Animal Virus derived vectors- SV-40, vaccinia/bacculo& retroviral vectors. Expression vectors; pMal, GST, pET-based vectors Baculovirus and Pichia vectors system. Applications: His-tag, GST-tag, MBP-tag etc. Restriction proteases, intein-based vectors. Inclusion bodies, methodologies to reduce formation of inclusion bodies. **Credit III Cloning Methodologies** 15 Hrs Insertion of Foreign DNA into Host Cells: Transformation, Transduction, Conjugation, Transfection: Chemical and physical methods, liposomes, microinjection, macroinjection, electroporation, somatic cell fusion, gene transfer by pronuclear biolistics. microinjection. Plant transformation technology: Basis of tumor formation, hairy root, features of Ti and Ri plasmids, mechanism of DNA transfer, role of virulence genes, use of Ti and Ri as vectors. Cloning and expression in yeasts (Saccharomyces, Pichia etc.), animal and plants cells, methods of selection and screening, cDNA and genomic cloning, expression cloning, yeast two hybrid system, phage display. DNA Libraries: Construction of cDNA libraries in plasmids and screening methodologies, Construction of cDNA and genomic DNA libraries in lambda vector, jumping libraries. Principles in maximizing gene expression.

### **SEMESTER III**

| Credit IV | PCR                                                                                                               | 15 Hrs |
|-----------|-------------------------------------------------------------------------------------------------------------------|--------|
|           | Primer design, Fidelity of thermostable enzymes, DNA polymerases,                                                 |        |
|           | Types of PCR: multiplex, nested, reverse transcriptase, real time,                                                |        |
|           | touchdown, hot start, colony, cloning of PCR products, T-vectors, proof                                           |        |
|           | reading enzymes, PCR in gene recombination, deletion, addition,                                                   |        |
|           | overlap extension, and SOEing, site directed mutagenesis, PCR in                                                  |        |
|           | molecular diagnostics, viral and bacterial detection, PCR based                                                   |        |
|           | mutagenesis.                                                                                                      |        |
|           | Applications                                                                                                      |        |
|           | Sequencing methods: Enzymatic DNA sequencing, Chemical                                                            |        |
|           | sequencing of DNA, principle of automated DNA sequencing,                                                         |        |
|           | NextGene DNA sequencing Methods (SOLiD, Ilumina and                                                               |        |
|           | pyrosequencing), RNA sequencing, Chemical Synthesis of                                                            |        |
|           | oligonucleotides.                                                                                                 |        |
|           | Gene silencing techniques: Introduction to siRNA and siRNA                                                        |        |
|           | technology, micro RNA, construction of siRNA vectors, principle and                                               |        |
|           | application of gene silencing. CRISPR, CRISPR/Cas9 technology.                                                    |        |
|           | Gene knockouts and Gene Therapy: Creation of knockout mice, disease                                               |        |
|           | model, somatic and germ-line therapy in vivo and ex-vivo, suicide gene therapy, gene replacement, gene targeting. |        |
|           | Other applications: Transgenics, Genome projects and their                                                        |        |
|           | implications, application in global gene expression analysis.                                                     |        |
|           | Applications of recombinant DNA technology in medicine, agriculture,                                              |        |
|           |                                                                                                                   |        |
|           | veterinary sciences and protein engineering.                                                                      |        |

- 1. Sambrook J, Fritsch E. F. and Maniatis (1989) Molecular cloning, vol. I, II, III, II nd edition, Cold spring harbor laboratory press, New York.
- 2. DNA Cloning : A practical approach D.M. Glover and D.B. Hames, RL Press, Oxford, 1995
- 3. Molecular and cellular methods in Biology and Medicine, P.B. Kaufman, W. Wu , D. Kim and L.J. Cseke, CRC Press Florida 1995
- 4. Methods in Enzymology Guide to Molecular Cloning Techniques, Vol. 152 S.L. Berger and A. R. Kimmel, Academic Press Inc, San Diego, 1996
- 5. Methods in Enzymology Gene Expression Technology, Vol. 185D. V. Goedel, Academic Press Inc, San Diego, 1990
- 6. DNA Science: A First Course in Recombinant Technology, D. A. Mickloss and G. A Freyer, Cold Spring Harbor Laboratory Press, New York, 1990
- 7. Molecular Biotechnology, 2nd Ed. S. B. Primrose, Blackwell Scientific publishers, Oxford, 1994
- Milestones in Biotechnology, Classic Papers on Genetic Engineering, J. A. Davis and W. S. Reznikoff, Butterworth-Heinemann Boston 1992
- 9. Route Maps in Gene Technology, M. R. Walker, and R. Rapley, Blakwell Science, Oxford, 1997
- Genetic Engineering : An Introduction to Gene Analysis and Exploitation in Eukaryotes, S. M. Kingsman, Blackwell Scientific Publications, Oxford, 1998

- 11. An Introduction to Genetic Engineering, 3<sup>rd</sup> Edition. Desmond S. T. Nicholl, Cambridge University press, 2008.
- 12. Gene Cloning and Manipulation, 2<sup>nd</sup> Ed. Cristopher Howe, Cambridge University Press, 2007.

|            | CCS-302: Microbial Diversity and Extremophiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 Hrs |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credit I   | Microbial Ecology:<br>Basic ecological principles, Ecosystems, Habitats, Ecological niches,<br>microbial community, Population dynamics and ecosystem<br>management, mathematical definitions and suitable examples of<br>microbe-microbe interactions, microbe-plant interactions and microbe –<br>animal interactions.                                                                                                                                                                                                                                                                                              | 15 Hrs |
| Credit II  | <ul> <li>Microbial taxonomy:</li> <li>Brief study on: Algae: Classification, distribution, structure, nutrition and metabolism, reproduction, importance of Algae.</li> <li>Fungi; Classification, distribution, structure, nutrition and metabolism, reproduction, importance of Fungi.</li> <li>Protozoa ; Classification, nutrition, morphology, reproduction, of protozoa.</li> <li>Viruses; .General properties, classification and reproduction of viruses.</li> <li>Viroids and virusoids, Prions.</li> </ul>                                                                                                  | 15 Hrs |
| Credit III | Study of types of Microbes with examples:<br>Concept of autotrophy, Photosynthetic bacteria- Green sulphur bacteria,<br>cyanobacteria classification characteristics of each class,<br>Methanogens- class of Archeabacteria methanogens types and their<br>classification, Methanotrophs- concept and classification,<br>Nitrogen fixing bacteria- Concept of diazotrophy, Classification of N2<br>fixing bacteria as free living and symbiotic and their characteristics.<br>Extremophiles: Concept, adaptation, habitat and significance of<br>Acidophilic bacteria, Halophilic bacteria and Thermophilic bacteria. | 15 Hrs |
| Credit IV  | Microbial interactions with abiotic components and their<br>applications:<br>Other microbial interactions and its controls, with certain abiotic<br>components of environment like wood, plastic, paints, rubber,<br>pesticides, toxic heavy metals, etc.: Biodeteriorations, Bioremediations,<br>Biotransformations and Biomagnifications and their significance with<br>respect to environment and biodiversity.<br>Role of microbes in secondary and tertiary recovery of petroleum.                                                                                                                               | 15 Hrs |

- 1. Extremophiles (2000) By B.N.Johari, Springer Verlag
- 2. Microbial Diversity (1999) By D. Colwd, Academic press

- 3. Microbial Ecology (1979) By J.M. Lynch and N.J.Poole, Blackwell Scientific Publications, Oxford.
- 4. Introduction to Modern Virology (2001) eds.: N.J.Dimmock and K.N.Leppard, Blackwell Scientific Publications, Oxford.

|            | CCS-303: Pharmaceutical Microbiology                                                                                                                                                                                                                                                                                                                                                                           | 60 Hrs |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credit I   | Introduction to chemotherapeutic agents:<br>History and development of chemotherapeutic agent, Properties of<br>antimicrobial agents, Types of chemotherapeutic agents – Synthetic,<br>Semisynthetic, Natural.<br>Antibiotics: Types of antibiotics with their mode of action;<br>antibacterial, antifungal, antiviral, antiprotozoal                                                                          | 15 Hrs |
| Credit II  | Antibiotic resistance and development of new therapeutics:<br>Development of antibiotic resistance, Mechanism of antibiotic<br>resistance,<br>Antimicrobial Peptides: History, properties, sources, mode of<br>action, application.<br>Phage therapy: introduction to phages, lytic cycle, types of phages<br>involved in phage therapy<br>Plant based therapeutic agents.                                     | 15 Hrs |
| Credit III | Sterilization and Microbial spoilage of pharma products:<br>Microbial contamination spoilage and hazard: Sources of<br>contamination, factors affecting survival and growth, breakdown<br>of active ingredient and general formulations.<br>Principles of sterilizations with respect to pharmaceutical industries.<br>Methods of sterilizations: Steam, dry heat, Radiation, Gaseous and<br>Filtration        | 15 Hrs |
| Credit IV  | PreservationPreservationofPharma Products:Principles of preservation: objectives of preservation, the idealpreservative, rational development of a product preservativesystem etc.Antimicrobial preservatives and their properties: antimicrobialactivity, factors affecting antimicrobial activity, preservativemonographs.Preservative stability and efficacy.methods of Preservative evaluation and testing | 15 Hrs |

- 1. Pharmaceutical Microbiology Edt. by W.B.Hugo & A.D.Russell Sixth edition. Blackwell scientific Publications
- 2. Prescott's Microbiology 8th Edition by Willey, Joanne, Sherwood, Linda, Woolverton, Chris.
- 3. Pharmaceutical Microbiology by Ashutosh Kar

|            | DSE-304 : Immunology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 Hrs |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credit I   | <ul> <li>Immunology – fundamentals and anatomy of immune system</li> <li>A) Immunity – Innate and acquired immunity. Components of innate and acquired immunity.</li> <li>B) Antigen, Haptens, adjuvants, mitogens. Antibodies – structure, functions.</li> <li>C) The anatomy of the immune response: - Cells and organs of immune system. Regulation of immune response – Humoral and Cell mediated response.</li> </ul>                                                                                                                                                      | 15 Hrs |
| Credit II  | <ul> <li>Immunity to infection</li> <li>A) Antigen processing and presentation, MHC, complement system, T &amp; B cell activation.</li> <li>B) Bacterial, viral, protozoal and parasitic infections with reference to (Diphtheria, influenza virus, malaria and helminthes) with specific representative examples of each group.</li> <li>C) Vaccines – Active and passive immunization, DNA vaccines, multivalent subunit vaccines, synthetic peptide vaccines.</li> </ul>                                                                                                     | 15 Hrs |
| Credit III | <ul> <li>Clinical Immunology</li> <li>A) Hypersensitivity: - Type I, II, III, and IV reactions. Autoimmunity – organ specific and systemic autoimmune diseases. Treatment of autoimmune diseases.</li> <li>B) Transplantation and tumor immunology: - Graft rejection, tissue typing, immunosuppressive therapy and clinical transplantation. Tumor antigens, cancer immunotherapy.</li> <li>C) Immunodeficiency diseases - Phagocytic, humoral, cell mediated deficiencies and SCID. AIDS- causes, syndrome, diagnostic tools, treatment and development of vaccine</li> </ul> | 15 Hrs |
| Credit IV  | <ul> <li>Immunotechnology</li> <li>A) Antigen antibody interactions – Principles, types and applications of agglutination, precipitation, complement fixation, viral neutralization, immunodiffusion, immunoelectrophoresis, ELISA and RIA.</li> <li>B) Monoclonal antibodies – Hybridoma technology and various cellular technologies.</li> <li>C) Automation in immunological techniques – auto analyzers used in immunology, FACS etc.</li> </ul>                                                                                                                            | 15 Hrs |

1. Kuby : Immunology; RA Goldsby, Thomas J. Kindt, Barbara A. Osborne.

- Immunology by Roitt I. M., Brostoff J. and Male D. Gower medical publishing London.
   Fundamentals of immunology 4th ed., Paul 1999, Lippencott Raven.

|        | CCPR-305: Laboratory Course(120 hrs) 200 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part A | <ol> <li>Screening of antibiotic producers- crowded plate technique</li> <li>Screening of organic acid producers &amp; amine producers</li> <li>Screening of Amylase, Protease &amp; Lipase producers</li> <li>Screening of Vitamin producers</li> <li>Enrichment and isolation of pesticide resistant bacteria from soil</li> <li>Isolation of thermophilic bacteria from soil</li> <li>Isolation of acidophilic and alkalophilic bacteria from soil</li> <li>Isolation of psychrophilic bacteria from soil</li> <li>Isolation of psychrophilic bacteria from soil</li> <li>Isolation of fefective dilution of the given disinfectant to disinfect tables &amp; vessels</li> <li>Determination of effective dilution of the given preservative</li> <li>Determination of preservative effect of the given preservative</li> <li>Determination of potability of the given water sample from microbiological point of view.</li> <li>Estimation of lysozyme from egg.</li> <li>Staining Protocols:         <ul> <li>a) Grams Staining</li> <li>b) Endospore Staining</li> <li>c) Negative staining</li> <li>e) Capsule staining</li> </ul> </li> </ol> |

|         | 1. Fermentative production of gluconic acid.       |
|---------|----------------------------------------------------|
|         | 2. Bioassay of streptomycin.                       |
|         | 3. Fermentative production of wine                 |
|         | 4. Maintenance and handling of cultures.           |
|         | 5. Standard Plate count                            |
|         | 6. IMViC Test                                      |
|         | 7. MPN                                             |
| De st D | 8. Replica Plate technique                         |
| Part B  | 9. Rapid identification methods of bacteria        |
|         | 10. Production of citric acid by Aspergillus niger |
|         | 11. Transformation                                 |
|         | 12. Conjugation                                    |
|         | 13. ELISA and Widal                                |
|         | 14. Western blot.                                  |
|         | 15. Transduction                                   |
|         | 16. Protoplast fusion                              |

|           | AEC-306 : Mandatory Non-CGPA compulsory Ability<br>Enhancement Course |        |
|-----------|-----------------------------------------------------------------------|--------|
| Credit I  | Syllabus and nature of paper will be opted as per committee decision. | 15 Hrs |
| Credit II |                                                                       | 15 Hrs |

|           | EC (SWMMOOC) 307 : Non-CGPA Elective Course                      |  |
|-----------|------------------------------------------------------------------|--|
|           | Food Microbiology and Food Safety                                |  |
| Credit I  | Syllabus and nature of paper will be opted as per swayam portal. |  |
| Credit II |                                                                  |  |

#### **CC-401: Quality Management and IPR 60 Hrs** Credit I **Quality Assurance:** 15 Hrs Introduction of quality assurance, GMP for: building (premises) for manufacture of drugs, Packaging material, Personnel, hygiene, sanitation, waste and disposal. Ouality assurance and regulatory aspect for: import, export, manufacture and sale of drug and formulation clinical and nonclinical testing, animal trials. Records and documents: Records related to products release, Quality review, and Quality audits. Complains and recalls. **Credit II Quality Control :** 15 Hrs Definition - Quality control basics. Quality control for: all instruments, clothing's, packing, processing line. Quality control of processes and products: pharmaceutical products including sterile injectibles, non injectibles, ophthalmic preparations and implants modified release products (controlled release, sustained release products, etc), parenterals. **Credit III Quality Management in pharmaceutical:** 15 Hrs Production Management and Documentation: ICH, ISO 9000 series, total quality management, validation for tablets and parenterals, practice of WHO GMP. Industrial Safety: Industrial hazards and their prevention, fire, accidents, mechanical and electrical equipments, industrial effluent testing. Drug stability: Solution stability, solid stability, parameters for physical stability testing, protocol for physical stability testing program, accelerated studies and shelf life assignment. Credit IV Economics and intellectual property rights in pharma 15 Hrs industries: Entrepreneurship, Financing R&D capital and market outlook. IP, BP, USP. Government regulatory practices and policies, FDA perspective. Reimbursement of drugs and biologicals, legislative perspective. Rational drug design. intellectual property rights, Introduction to patents,

### **SEMESTER IV**

- 1. Quality control in the Pharmaceutical Industry Edt. by Murray S.Cooper Vol.2. Academic Press New York.
- 2. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.

- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methods of Analysis and Quality specification for Pharmaceutical Substances, Expedients and Dosage forms, 3rd edition, WHO, Geneva, 2005

|            | CCS-402: Fermentation Technology and Process                        | 60 Hrs |
|------------|---------------------------------------------------------------------|--------|
|            | Designing                                                           |        |
| Credit I   | Microbial growth and fermentation:                                  |        |
|            | Microbial Growth and its measurement, fermentation media:           |        |
|            | composition, rheology and optimization, Gas diffusion: oxygen       |        |
|            | uptake and mass transfer, Strain improvement: isolation,            |        |
|            | preservation and strain improvement of industrially important       |        |
|            | microorganisms.                                                     |        |
| Credit II  | Fermenter design and process involved in fermentation:              | 15 Hrs |
|            | Fermenter design: materials and auxillary equipments of fermenter   |        |
|            | used in aeration, agitation and fermentation, sterilization methods |        |
|            | of solid liquid and air media. Fermentation process control:        |        |
|            | Knowledge Based System (KBS), Genetic Algorithm (GA),               |        |
|            | Artificial Neural networks(ANN). Flux Control Analysis and          |        |
|            | Biosensors. Modeling of fermentation process.                       |        |
| Credit III | Types of fermentation and process development:                      | 15 Hrs |
|            | Types of fermentation Batch, fed-batch and continuous               |        |
|            | fermentation and their yield and growth Kinetics. Fermentation      |        |
|            | economics, Scale up and scale down, downstream processing.          |        |
|            | Effluent treatment of industrial waste: physical, chemical and      |        |
|            | biological methods.                                                 |        |
| Credit IV  | Microbial fermentations:                                            | 15 Hrs |
|            | Production of Microbial Enzymes, organic acids, amino acids.        |        |
|            | Fermentative production of Penicillin, Bacitracin, Streptomycin.    |        |
|            | Microbial production of Vit B12, Riboflavin, β-Carotene             |        |

- 1. Fermentation Microbiology and Biotechnology by M. El-Mansi and C. Bryce
- 2. Principles of Fermentation Technology by Whitekar, Stanbury and Hall Modelling and
- 3. Control of Fermentation Processes by J.R. Leigh
- 4. Microbial Technology, Microbial Processes, Second Edition/Volume I by H. J. Peppler, D. Perlman

|            | CCS-403: Bioinformatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 Hrs |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credit I   | <ul> <li>Proteomics: Protein Sequence Databases and Analysis</li> <li>Protein sequence information, Primary protein sequence databases,<br/>Secondary protein sequence databases, Pair-wise sequence alignment,<br/>gaps, gap-penalties, scoring matrices, PAM250, BLOSUM62, local and<br/>global sequence alignment, multiple sequence alignment,<br/>physicochemical properties using ExPASy, Useful programme; Clustal<br/>W.</li> <li>Proteomics; Strutural Databases, Protein Structure Prediction<br/>Structural databases; Protein Data bank (PDB), Nucleic Acid Data<br/>Bank (NDB), Molecular modeling Data Bank (MMDB). Homology<br/>modeling, three-dimensional structure prediction, protein folding and<br/>functional sites.</li> </ul>                                                                                         | 15 Hrs |
| Credit II  | Genomics: Nucleotide Sequence Databases And Analysis<br>Human Genome project (HGP); rough and final draft of HGP, goals of<br>the HGP, genomics. Nucleotide Sequence databases: GenBank, EMBL,<br>DNA Data Bank of Japan (DDBJ). Restriction enzymes, REBASE,<br>Polymerase chain reaction, primer designing, Next Generation<br>Sequencing, application of BioEdit.<br>Genomics: Gene Identification<br>Genome information and special features, coding sequences (CDS),<br>untranslated regions (UTR's), cDNA library, expressed sequence tags<br>(EST), 16S rDNA gene sequencing. Approaches to gene identification;<br>masking repetitive DNA, database search, codon-bias detection,<br>detecting functional sites in the DNA. Internet resources for gene<br>identification. Construction of maps, genetic map, physical map,<br>BLAST. | 15 Hrs |
| Credit III |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 Hrs |
| Credit IV  | Microarrays<br>Concept of microarrays; spotted arrays, oligonucleotide arrays,<br>Applications of microarray technology. Tools and Techniques in<br>proteomics; Isotope Coded Affinity Tags (ICAT), Mass spectroscopy<br>for protein analysis, MALDI-TOF, Electrospray ionization (EST),<br>Tandem mass spectroscopy (MS/MS) analysis; tryptic digestion and<br>peptide fingerprinting (PMF), profiling and diagnostics, drug target<br>discovery.                                                                                                                                                                                                                                                                                                                                                                                            | 15 Hrs |

| Phylogenetic Analysis                                                   |  |
|-------------------------------------------------------------------------|--|
| Evolution, phylogenetic tree, methods of phylogenetic analysis;         |  |
| distance based and character based methods, phylogenetic analysis tool- |  |
| Phylip.                                                                 |  |

- 1. Introduction to Bioinformatics, (Atwood, T. K. and Parry-Smith, D. J).
- 2. An introduction to Computational Biochemistry. (C. Stain Tsai, A John Wiley and Sons, Inc., publications).
- 3. Developing Bioinformatics Computer Skills. (Cynthia Gibas and Per Jambeck).
- 4. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery. (Rastogi S. C. Mendiratta, and Rastogi P.)
- 5. Bioinformatics, Sequence and Genome Analysis by David Mount, Cold Spring Harbor Laboratory Press, NY, 2004.
- 6. NCBI Web site: <u>http://www.ncbi.nlm.nih.gov</u>

|            | DSE-404: Medical Microbiology                                                                                                          | 60 Hrs |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|
| Credit I   | Virulence:                                                                                                                             | 15 Hrs |
|            | Invasion of pathogens through the different immunological                                                                              |        |
|            | barriers of human body. Establishment of infection. Role of portal of                                                                  |        |
|            | entry of the pathogen. Antigenic variations and virulence. Microbial                                                                   |        |
|            | toxins and super antigens. Carriers of infections. Epidemiology of                                                                     |        |
|            | certain diseases like urino-genital infections, upper respiratory tract                                                                |        |
|            | infections, dermatological infections and gastero intestinal tract                                                                     |        |
|            | infections. Loss of virulence by many pathogens on subculturing on                                                                     |        |
| Credit II  | artificial media.                                                                                                                      | 15 Hrs |
| Credit II  | Epidemiology:                                                                                                                          | 15 Hrs |
|            | Spread of certain infections in a population. Concept of epidemic,<br>endemic and pandemic spread. Role of socioeconomic conditions in |        |
|            | spread of disease.                                                                                                                     |        |
|            | Epidemiological methods- descriptive, analytical and experimental                                                                      |        |
|            | epidemiology. Measurement of infection rate.                                                                                           |        |
| Credit III | Chemotherapy:                                                                                                                          | 15 Hrs |
|            | Development of drug resistance amongst pathogens – antibiotic                                                                          |        |
|            | resistance mechanisms. Disease management methods. Different                                                                           |        |
|            | prophylactic and therapeutic methods in control of infections.                                                                         |        |
| Credit IV  | Clinical Microbiology:                                                                                                                 | 15 Hrs |
|            | Collection and transportation of pathological samples with                                                                             |        |
|            | specialreference to samples like Cerebro Spinal Fluid (CSF), Sputum                                                                    |        |
|            | samples, Urine samples and swabs. Certain cultural techniques for                                                                      |        |
|            | pathogens like Dermatophytes, Salmonella, Meningococcus,                                                                               |        |
|            | Leptospira, Mycobacterium, Vibrio, Plasmodium spp, Wucheria                                                                            |        |
| 1          | bancriofti, and Ascaris lumbricoides.                                                                                                  |        |
|            | Rapid methods of identification of infection like ELISA, FAT, RIA and Western Blot techniques.                                         |        |
|            | western blot techniques.                                                                                                               | l      |

- 1. Introduction to Microbiology by Prescott, Harley, Klein
- Medical Microbiology by Ananthanaryan
   Medical Microbiology by Dey and Dey

|        | CCPR- 405: Laboratory Course and Project (120 Hrs)<br>(200 Marks)                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|
| Part A | •                                                                                                                                   |
|        | <ul><li>23. Construction of three-dimensional model by using SPARTAN.</li><li>24. Model Building and Energy minimization.</li></ul> |
|        | 25. Molecular Docking and Drug designing                                                                                            |
| Part B | Research Project(100 Marks)                                                                                                         |

|           | SEC-406 : Mandatory Non-CGPA compulsory Skill                         |        |  |
|-----------|-----------------------------------------------------------------------|--------|--|
|           | Enhancement Course                                                    |        |  |
| Credit I  | Syllabus and nature of paper will be opted as per committee decision. | 15 Hrs |  |
| Credit II |                                                                       | 15 Hrs |  |

### **GE-407: Mandatory Non-CGPA Generic Elective Course**

| Sr.<br>No. | Generic Elective Title<br>of the paper | Credits<br>assigned to<br>the paper | Semester for<br>which course<br>is offered | Eligibility           |
|------------|----------------------------------------|-------------------------------------|--------------------------------------------|-----------------------|
| 1.         | Basics of Microbiology                 | 2                                   | IV                                         | Masters in any stream |

|           | GE-407: Basics of Microbiology                                                                                                                                                                                                                                                                                                                                        | 30 Hrs |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Credit I  | <ul> <li>Introduction to Microbiology:</li> <li>Origins of Microorganisms, differences between eukaryotic and prokaryotic cells,</li> <li>Types of microorganisms, Beneficial and harmful activities of microorganisms.</li> <li>Bacterial cell structure and its physiology.</li> <li>Microbial growth: growth curves, Bacterial nutrition, Culture media</li> </ul> |        |  |  |
| Credit II | Techniques in Microbiology:Pure culture techniques: streak plate, pour plate, spread plate,Microscopy.Isolation of aerobic and anaerobic bacteria,Control of microorganisms: different methods such as physical andchemical, disinfection, antimicrobial test.Stains and staining techniques: definition and types of stains,monochrome and Gram staining             | 15     |  |  |

- Introduction to Microbiology by Prescott, Harley and Kein
   Microbiology by Pelczar